Competitive Academic Agreement Program

Advancement in the Area of Intrinsically Locatable Plastic Materials

Dr. Udaya B. Halabe 11/28/2017

Project Team

- Project PI/co-PI: Udaya B. Halabe,
 Hota V. S. GangaRao, and John Zondlo
- Graduate Students: Jonas Kavi, Ben Imes, and Andrew Cvetnick

Background

- US has 2.7 millions miles natural gas and hazardous liquid transmission and distribution pipeline
 - 2.5 million miles of natural gas
 - -0.2 million miles of hazardous liquid

Background (cont.)

Major challenges of the pipeline industry:

- Corrosion of steel pipes.
- Excavation damage.
- Material failure.
- Above factors ~ 66% of pipeline failures.

Pipeline incidents in TX and CA (Source: DOT, NTSB, Sacramento Bee)

Main Objective

Develop strategies for creating and locating buried non-metallic pipe materials through the following research activities:

- Develop, investigate, and compare alternative strategies for creating easily locatable Fiber Reinforced Polymer (FRP) pipes.
- Carbon and Glass Fiber Reinforced Polymers CFRP and GFRP.
- Aluminum or CFRP fabric overlay for GFRP and PVC pipes.
- Investigate pipe detectability using Ground Penetrating Radar (GPR) and Infrared Thermography (IRT).
- Investigate the feasibility of gas leak detection.

Industry Needs

- Natural Gas Transmission lines- 20" to 40" Dia.
 200 to 1500 psi
- Increase in demand higher pressures needed (3000-5000 psi)
- Increase in service life corrosion, hydrogen embrittlement, nano cracking.
- Increase in safety 100 deaths each year
- Increase detectability

Proposed Material

- Glass Fiber Reinforced Polymer (GFRP) offers
 - Corrosion resistance-soil interaction, pH, Moisture
 - Resistance to hydrogen embrittlement
 - Less electrical conductivity than steel
 - Less thermal conductivity fire resistance
 - Higher strength to weight ratio than steel
 - Superior flexibility differential settlement
 - Potential for easier detectability

Pultruded 16" Dia GFRP Pipe

Pipe Burst Test

- Design of GFRP pipe (6"- 10") ~ 2500 psi burst pressure
- Static and Fatigue load testing
- Another CAP research project is currently underway to increase burst pressures up to 10,000 psi

GFRP Pipe Cross Section

End Caps

6 Inch Diameter Pipe

10 Inch Pultruded Pile

10 Inch Filament Wound Pipe

Frame Setup Revision Two

10 Inch Diameter Pressure Test

Test Frame Design

Test Frame Design

Test Frame

GPR and IRT for Buried Pipe Detection

GPR equipment setup

IRT equipment

Research Approach

Major tasks to achieve the objective of the project are:

- Wrap PVC and GFRP pipes with aluminum or carbon fabric strips for easy detection.
- Wrap PVC and GFRP pipes with aluminum or carbon fabric rings for easy detection.
- Investigate and compare the detectability of the above pipes (buried) using GPR.
- Investigate IRT for detecting buried pipes carrying hot liquid.

Pipe Samples

Sample pipes with carbon fabric and aluminum rings

Sample pipes with carbon fabric and aluminum strips

Pipe Samples (cont.)

Pipe samples were buried in 3 ditches:

- 12" diameter pipes at 4' depth.
- 12" & 6" diameter pipes at 3' depth.
- 3" diameter pipes at 2' depth.
- 11 pipes in each trench, 33 pipes in total.

Pipe samples being buried

GPR Antennae

Two different antennae evaluated

200 MHz Antenna with Survey Wheel

GPR testing system

Decagon Sensors

Used for measuring dielectric constant of soil.

Soil moisture, resistivity, and dielectric constant sensor

Data logger

GPR Results

3 inch diameter pipes at 2 feet depth scanned with 400 MHz antenna

Sample cross-sectional GPR scan (left) and A-scan (right) over pipe wrapped with CFRP fabric

Sample longitudinal GPR scan (left) and A-scan (right) over pipes buried at 2' depth

400 MHz antenna signals for pipes below 2 feet depth

Sample cross-sectional GPR scan (left) and A-scan (right) across three trenches

12 inch diameter pipes at 3 feet depth scanned with 200 MHz antenna

Longitudinal GPR scan (left) and A-scan (right) over GFRP pipe

12 inch diameter pipes at 4 feet depth scanned with 200 MHz antenna

Longitudinal GPR scan (left) and A-scan (right) over PVC pipe wrapped with CFRP fabric

3 inch diameter pipes at 2 feet depth scanned with 200 MHz antenna

Longitudinal GPR scan (left) and A-scan (right) a 2 feet deep pipe

- 400 MHz GPR antenna was unable to detect pipes buried deeper than 2 feet.
- ii. 200 MHz radar antenna produced significantly better result compared to 400 MHz radar antenna for buried pipe detection.
- iii. Use of CFRP fabric or Aluminum Foil on the surface made the non-metallic pipes detectable using GPR.
- iv. Precise location of the pipes using distance tracker and comparison of signals from different pipes show CFRP fabric and aluminum tape overlays significantly improve pipe detection.

Infrared Thermography (IRT)

- A 3" diameter CFRP pipe buried in a wooden box.
- A mixture of gravel, sand and top soil medium.
- 14" soil cover.

Pipe samples being buried

IRT Test Setup

- 5 thermocouples on pipe surface.
- 1 thermocouple at soil surface.
- Hot water (95°C) pumped through pipe.
- IRT and thermocouple data collect periodically.

IRT Test Setup

IRT Test Results

- Sharper soil temperature increase in first 48 hours.
- Gradual increase for the next 4 days.
- Very little increase between 6th and 10th days

IRT data at soil surface at various states of testing.

IRT data trend over a ten day period.

IRT Results Summary

- i. Infrared Thermography was able to detect 3" diameter CFRP pipe carrying hot water (95°C) at 14" soil depth.
- Larger diameter pipes may be detectable at larger depths.

Gas Leak Testing Apparatus

- Design an experimental testing apparatus capable of simulating the underground conditions faced by pipelines
- Testing with this apparatus will include:
 - Leak simulations
 - Leak detection Tests will be performed using a LM99
 Cirrus Mass Spectrometer
 - Model pressure change versus time with choked-flow analysis
 - Predict leak flow-rate vs. time and pressure

Testing Apparatus

Choked Flow Analysis

Trial 1— P_0 = 50 psi: $ln[P(t)/P_0]$ v.s. Time

- $ln \frac{P}{P_0}$ vs t analysis required in order to determine the validity of the choked-flow model
 - Theoretical Model:

$$ln\frac{P}{P_{atm}} = -k't$$

- Determined k' value
- -k' = correlation of constants
- Predict leak rate vs. pressure

Mass Flow Equilibrium

- Mass flow trials were run above the choke flow pressure to verify the theoretical flow
- $\dot{m} =$

$$C_0 AP(t) \sqrt{\frac{\gamma g_c M}{RT_0} \left(\frac{2}{\gamma + 1}\right)^{\frac{\gamma + 1}{\gamma - 1}}}$$
$$- \dot{m}(t) = KP(t)$$

 Will allow for better prediction of gas detection

Gas Detection

On-Going Research - Next Phase

- One dimensional transient gas diffusion model
- Leak detection with different soil compactions
- Will lead to autonomous detection system

Project Conclusions

- Current FRP pipe designs provide burst pressures up to 2300 psi, and additional work is being carried out to improve burst pressures (under another USDOT-PHMSA funded project).
- ii. GPR was able to detect pipes at 2' 4' depth, and 200 MHz antenna was found to be more effective compared to 400 MHz antenna.
- iii. Use of CFRP fabric or Aluminum Foil on the surface made the non-metallic FRP pipes detectable using GPR.
- iv. The mass spectrometer provides a viable method for detecting a leak with the increase in gas concentration inside the soil.

Project Reporting

 Final Report and any student poster papers are available from:

https://primis.phmsa.dot.gov/matrix/PrjHome.rdm?prj=632

THANK YOU!

